Sidebar Menu

2 X 2 X 3 Factorial Design with Basic Design: RCBD
The following is a description of the 2 X 2 X 3 Factorial Design Data Tabulation, Linear Models, Assumptions, Variety Analysis Formulas and hypotheses. The values of the observational data from the experiment can be tabulated as follows:

Analyse data using SmartstatXL Add-In can be learned on the following link: How to Analyze RCBD Factorial Experiments (3 Factors)


The values of the experiment can be tabulated as follows :

Table 29.  Tabulation of Factorial Design Data 2 X 2 X 3 In Complete Block Random Design

Block

Varieties

P1

P2

 

 

T1

T2

T3

T1

T2

T3

1

V1

Y1111

Y1112

Y1113

Y1121

Y1122

Y1123

 

V2

Y1211

Y1212

Y1213

Y1221

Y1222

Y1223

2

V1

Y2111

Y2112

Y2113

Y2121

Y2122

Y2123

 

V2

Y2211

Y2212

Y2213

Y2221

Y2222

Y2223

3

V1

Y3111

Y3112

Y3113

Y3121

Y3122

Y3123

 

V2

Y3211

Y3212

Y3213

Y3221

Y3222

Y3223

Linear Model and Anova of Factorial Experiments with Three Factor In RCBD

The linear model of the 3-factor factorial experiment in the Randomized Complete Block Design is as follows:

$$Y_{ijkl}=\mu+\kappa_i+\alpha_j+\beta_k+\gamma_l+(\alpha\beta)_{jk}+(\alpha\gamma)_{jl}+(\beta\gamma)_{kl}+(\alpha\beta\gamma)_{jkl}+\varepsilon_{ijkl}$$

  = 1.2,... r          = 1, 2, ..., a        k = 1, 2, ..., b                       l = 1.2,... c

with Yijkl= the observation value of the i-th block obtaining the j-th level of factor A, the k-th level of factor B and the level of –l of factor c.

                    μ             = population mean

                    κi                    = effect of additives of the i-th block

                    αj                   = effect of additives of j-rated factor A

                    βk                  = effect of additives of the k-th level of factor B

                    γl             = effect of additives of the l-th level of factor C

                    (αβ) jk       = effect of the interaction of the j-th level of factor A and the k-th level of factor B

                    (αγ) jl        = effect of the interaction of the j-th level of factor A and the l-th level of factor C

                    (βγ) kl        = effect of the interaction of the k-th level of factor B and the l-th level of factor C

                    (αβγ) jkl  = effect of the interaction of the j-th level of factor A, the k-th level of factor B and the l-th level of factor C

                    εijkl                = random effect of the i-th block obtaining the j-th level of factor A, the k-th level of factor B and the lth level of factor C.

                                        εijkl ~N(0, σ2)

Assumption

Assumptions if all factors (factors A, B and C) are fixed :

 $$\begin{matrix}\sum_{j}{\alpha_j=\sum_{k}\beta_k=\sum_{l}\gamma_l=\sum_{j}\left(\alpha\beta\right)_{jk}}=\sum_{k}\left(\alpha\beta\right)_{jk}=\sum_{j}\left(\alpha\gamma\right)_{jl}=\sum_{l}\left(\alpha\gamma\right)_{jl}=\sum_{k}\left(\beta\gamma\right)_{kl}=\\\sum_{l}\left(\beta\gamma\right)_{kl}=\sum_{j}\left(\alpha\beta\gamma\right)_{jkl}=\sum_{k}\left(\alpha\beta\gamma\right)_{jkl}=\sum_{l}\left(\alpha\beta\gamma\right)_{jkl}=0\\\end{matrix}$$

Analysis of variance

The sum of the squares of the 3-factor factorial experiment in the Randomized Complete Block Design is as follows:

CF=                $\frac{Y^2....}{rabc}$

SSTOT=- CF $\sum_{i,j,k,l}{Y^2}_{ijkl}$

SSB=              $\frac{\sum_{i} Y_{i...}}{abc}-CF$

SST=              $\frac{\sum_{j,k,l}{Y^2}_{jkl}}{r}-CF$

SSE=SSTOT – SSB –SST

SS(A)=          $\frac{\sum_{j}\left(\alpha_j\right)^2}{rbc}-CF=\frac{\sum_{j}\left(total\ level\ factor\ \ A\right)^2}{rbc}\ \ -\ CF$

SS(B)=           $\frac{\sum_{k}\left(\beta_k\right)^2}{rac}-CF=\frac{\sum_{k}\left(total\ level\ factor\ \ B\right)^2}{rac}\ \ -\ CF$

SS(C)=           $\frac{\sum_{l}\left(\gamma_l\right)^2}{rab}-CF=\frac{\sum_{l}\left(total\ level\ factor\ \ C\right)^2}{rab}\ \ -\ CF$

SS(AB)=        $\frac{\sum_{j,k}\left(\alpha_j\beta_k\right)^2}{rc}-CF-SS(A)-SS(B)$

SS(AC)=        $\frac{\sum_{j,k}\left(\alpha_j\gamma_l\right)^2}{rb}-CF-SS(A)-SS(C)$

SS(BC)=        $\frac{\sum_{k,l}\left(\beta_k\gamma_l\right)^2}{ra}-CF-SS(B)-SS(C)$

SS(ABC)=SST-SS(A) – SS(B) – SS(C) – SS(AB) – SS(AC) – SS(BC)

 

The variance analysis table of the calculations above is as follows:

Table 30.  Anova Table of Three-Factorial Design in a Randomized Complete Block Design

Sources of Variance (SK)

Degree of freedom (df)

Sum of squares (SS)

Mean Square (MS)

F-stat

E(MS)

Block

r-1

SSB

MSB

 $$\frac{MSB}{MSE}$$

 $$\sigma^2+abc\frac{\sum_{i}{\kappa^2}_i}{(r-1)}$$

Treatment

abc-1

SST

MST

 

 

A

a-1

SS(A)

MS(A)

 $$\frac{MS\left(A\right)}{MSE}$$

 $$\sigma^2+rbc\frac{\sum_{j}{\alpha^2}_j}{(a-1)}$$

B

b-1

SS(B)

MS(B)

 $$\frac{MS\left(B\right)}{MSE}$$

 $$\sigma^2+rac\frac{\sum_{k}{\beta^2}_k}{(b-1)}$$

C

c-1

SS(C)

MS (C)

 $$\frac{MS\left(C\right)}{MSE}$$

 $$\sigma^2+rab\frac{\sum_{l}{\gamma^2}_l}{(c-1)}$$

AB

(a-1) (b-1)

SS(AB)

MS(AB)

 $$\frac{MS\left(AB\right)}{MSE}$$

 $$\sigma^2+rc\frac{\sum_{j,k}\left(\alpha_j\beta_k\right)^2}{(a-1)(b-1)}$$

AC

(a-1) (c-1)

SS(AC)

MS(AC)

 $$\frac{MS\left(AC\right)}{MSE}$$

 $$\sigma^2+rb\frac{\sum_{j,l}\left(\alpha_j\gamma_/\right)^2}{(a-1)(c-1)}$$

BC

(b-1) (c-1)

SS(BC)

MS(BC)

 $$\frac{MS\left(BC\right)}{MSE}$$

 $$\sigma^2+ra\frac{\sum_{k,l}\left(\beta_k\gamma_/\right)^2}{(b-1)(c-1)}$$

ABC

(a-1) (b-1) (c-1)

SS(ABC)

MS(ABC)

 $$\frac{MS\left(ABC\right)}{MSE}$$

 $$\sigma^2+r\frac{\sum_{j,k,l}\left(\alpha_j\beta_k\gamma_/\right)^2}{(a-1)(b-1)(c-1)}$$

Error

(r-1) (abc-1)

SSE

MSE

 

 $$\sigma^2$$

Total

rabc-1

SSTOT

 

 

 

 

Hypothesis

Hypothesis that needs to be tested if all factors are fixed:

1.Ho: (αβγ)jkl = 0

                H1:there is at least one (αβγ)jkl ≠ 0

2.Ho: (αβ)jk = 0

                H1:there is at least one (αβ)jk ≠ 0

3.Ho: (αγ)jl = 0

                H1:there is at least one (αγ)jl ≠ 0

4.Ho: (βγ)kl = 0

                H1:there is at least one (βγ)kl ≠ 0

5.Ho: αj = 0

                H1:there is at least one αj ≠ 0

6.Ho: βk = 0

                H1:there is a minimum of one βk ≠ 0

7.Ho: γl = 0

                H1:there is a minimum of one γl  ≠ 0

Example 1. Calculation By SmartstatXL Excel Add-In

Sample Data

Table Description automatically generated

Analysis Output:

Graphical user interface, application Description automatically generated

 

Interaction (Not Significant)